Journal of Mathematics and Statistics 5 (3):171-177, 2009 ISSN 1549-3644 © 2009 Science Publications

The Algebraic K-Theory of Finitely Generated Projective Supermodules P(R) Over a Supercommutative Super-Ring R

Ameer Jaber Department of Mathematics, the Hashemite University, Zarqa 13115, Jordan

Abstract: Problem statement: Algebraic K-theory of projective modules over commutative rings were introduced by Bass and central simple superalgebras, supercommutative super-rings were introduced by many researchers such as Knus, Racine and Zelmanov. In this research, we classified the projective supermodules over (torsion free) supercommutative super-rings and through out this study we forced our selves to generalize the algebraic K-theory of projective supermodules over (torsion free) supercommutative super-rings. **Approach:** We generalized the algebraic K-theory of projective modules to the super-case over (torsion free) supercommutative super-rings. **Results:** we extended two results proved by Saltman to the supercase. **Conclusion:** The extending two results, which were proved by Saltman, to the supercase and the algebraic K-theory of projective supermodules over (torsion free) supercommutative super-rings would help any researcher to classify further properties about projective supermodules.

Key words: Projective supermodules, superinvolutions, brauer groups, brauer-wall groups

INTRODUCTION

An associative super-ring $R = R_0 + R_1$ is nothing but a \mathbb{Z}_2 -graded associative ring. A \mathbb{Z}_2 -graded ideal $I = I_0 + I_1$ of an associative super-ring is called a superideal of R. An associative super-ring R is simple if it has no non-trivial superideals. Let R be an associative super-ring with $1 \in R_0$ then R is said to be a division super-ring if all nonzero homogeneous elements are invertible, i.e., every $0 \neq r_\alpha \in R_\alpha$ has an inverse r_α^{-1} , necessarily in R_a . If $R = R_0 + R_1$ is an associative superring, a (right) R-supermodule M is a right R-module with a grading $M = M_0 + M_1$ as R₀-modules such that $m_{\alpha}r_{\beta} \in M_{\alpha+\beta}$ for any $m_{\alpha} \in M_{\alpha}$, $r_{\beta} \in R_{\beta}$, $\alpha, \beta \in \mathbb{Z}_2$. An Rsupermodule M is simple if $MR \neq \{0\}$ and M has no proper subsupermodule. Following $[4]$ we have the following definition of R-supermodule homomorphism. Suppose M and N are R -supermodules. An Rsupermodule homomorphism from M into N is an R_0 module homomorphism $h_{\gamma}: M \to N$, $\gamma \in \mathbb{Z}_2$, such that $M_a h_y \subseteq N_{a+y}$. Let K be a field of characteristic not 2. An associative superalgebra is a \mathbb{Z}_2 -graded associative K-algebra $A = A_0 + A_1$. A superalgebra A is central simple over K, if $\hat{Z}(A) = K$, where $(\hat{Z}(A))_{\alpha} = {\alpha_{\alpha} \in \mathbb{R}^d}$ A_{α} : $\alpha_{\alpha}b_{\beta}$ = $(-1)^{\alpha\beta}b_{\beta}\alpha_{\alpha}\forall \beta_{\beta} \in A_{\beta}$ and the only superideals of A are (0) and A. Through out this study we let R be a supercommutative super-ring $(\hat{Z}(A) = R)$

with $1 \in R_0$. An R-superalgebra $A = A_0 + A_1$ is called projective R-supermodule if it is projective as a module over R. Define the superalgebra $A^e = A^o \hat{\otimes}_R A$, then A is right A^e -supermodule. There is a natural map π from A^e to A given by deleting o,s and multiplying.

In^[2], Childs, Garfinkel and Orzech proved some results about finitely generated projective supermodules over R, where R is a commutative ring. $In^[1]$, we generalized the same results about finitely generated projective supermodules over R, where R is a supercommutative super-ring. Here are the results:

Proposition 1: Let M be an R-supermodule and A an R-superalgebra then there exist isomorphisms of Rsuperalgebras:

$$
A\widehat{\otimes}_{R}End_{R}(M)\cong End_{R}(M)\widehat{\otimes}_{R}A
$$

Corollary 1: Let P and Q be a finitely generated projective supermodules over R, then:

 $\text{End}_R(P)$ $\widehat{\otimes}_R \text{End}_R(Q) \cong \text{End}_R(Q) \widehat{\otimes}_R \text{End}_R(P) \cong$ $\mathrm{End}_R(P\,\widehat{\otimes}_R\,Q\,)$

Theorem 1: Let A be an R-superalgebra. The following conditions are equivalent:

- A is projective right A^e -supermodule
- $0 \mapsto \ker(\pi) \mapsto A^e \longrightarrow A \rightarrow 0$ splits as a sequence of right A^e -supermodules

• $(A^e)_0$ contains an element ε such that $\pi(\varepsilon) = 1$ and $\epsilon(1 \otimes a_{\alpha}) = \epsilon (a_{\alpha} \otimes 1)$ for all $a_{\alpha} \in A_{\alpha}$

Definition 1: We say that A is R-separable if conditions (1-3) above hold.

Remarks:

- Condition (3) states that A is R-separable if and only if it is R-separable of the sense of ungraded algebras
- It is easy to see that ε defined above is idempotent. A is a central separable R-superalgebra if it is separable as an R-algebra, thus our Azumaya Ralgebras A are those separable R-algebras which are superalgebras over R and whose supercenter is R

 For any R-superalgebra A we have seen that A is naturally a right A^e -supermodule. This induces an Rsuperalgebra homomorphism μ from A^e to End_R (A) by associating to any element $x_{\alpha} \otimes y_{\beta}$ of A^e the element

 $x_{\alpha}y_{\beta}$ where for any $a_{\gamma} \in A_{\gamma}$:

$$
a_{\gamma}\mu(x_{\alpha}\otimes y_{\beta}) = a_{\gamma}.(x_{\alpha}y_{\beta}) = (-1)^{\alpha\gamma}x_{\alpha}a_{\gamma}y_{\beta}
$$

Theorem 2: Let A be an R-superalgebra. The following conditions are equivalent:

- A is an Azumaya R-superalgebra
- A is finitely generated faithful projective Rsupermodule and μ is an isomorphism

MATERIALS AND METHODS

Suppose C is any category and $obj(C)$ the class of all objects of C and let C(A,B) be the set of all morphisms $A \rightarrow B$, where $A, B \in obj(C)$. A groupoid is a category in which all morphisms are isomorphisms.

Definition 2: A category with product is a groupoid C, together with a product functor ⊥ : C×C→C which is assumed to be associative and commutative.

A functor $F: (C, \perp) \to (C', \perp')$ of categories with product is a functor $F: C \to C'$ which preserves the product.

Examples:

Let R be any supercommutative super-ring and let P(R) denote the category of finitely generated projective supermodules over Rwith isomorphisms as morphisms. It is a category with product if we set \bot = \oplus

- The subcategory $FP(R)$ of $P(R)$ with finitely generated faithful projective supermodules as objects. Her we set $\perp = \widehat{\otimes}_{R}$
- The category $Az(R)$ of Azumaya superalgebras over R. Her we take $\perp = \widehat{\otimes}_{R}$

 If C(R) denotes one of the categories mentioned above and if $R \rightarrow R'$ is a homomorphism of super-rings. Then $R' \hat{\otimes}_R$ induces a functor $C(R) \rightarrow C'(R')$ preserving product.

Definition 3: Let C be a category with product. The Grothendieck group of C is defined to be an abelian group $K_0 C$, together with the map ()_C: obj(C) \rightarrow $K_0 C$, which is universal for maps into abelian groups satisfying:

• if
$$
A \cong B
$$
, then $(A)_C = (B)_C$

$$
\bullet \quad (A \perp B)_C = (A)_C + (B)_C
$$

Definition 4: A composition on a category (C, \perp) is a composition of objects of C, which satisfies the following condition: if $A \circ A'$ and $B \circ B'$ are defined then so also is $(A \perp B) \circ (A' \perp B')$ and:

$$
(A \perp B) \circ (A' \perp B') = (A \circ A') \perp (B \circ B')
$$

Definition 5: If (C, \perp, \circ) is a category with product and composition. Then the Grothendieck group of C is defined to be an abelian group K_0 C, together with a map:

$$
()_C: obj(C) \rightarrow K_0 C
$$

which is universal for maps into abelian groups satisfying the two conditions in Definition 3 and:

If $A \circ B$ is defined, then $(A \circ B)_C = (A)_C + (B)_C$

An easy computation gives us the following result.

Proposition 2: Let (C, \perp, \circ) be a category with product and composition. Then:

- Every element of $K_0 C$ has the form $(A)_{C}$ - $(B)_{C}$ for some A , B in $obj(C)$
- $(A)_C = (B)_C$ if and only if $\exists C, D_0, D_1, E_0, E_1 \in$ obj(C), such that $D_0^{\circ}D_1$ and $E_0^{\circ}E_1$ are defined and $A \perp C \perp (D_0 \circ D_1) \perp E_0 \perp E_1 \cong B \perp C \perp D_0 \perp D_1 \perp (E_0 \circ E_1)$

If F: $C \rightarrow C'$ is a functor of categories with product and composition, then F preserves the composition. Moreover, the map $K_0F: K_0C \rightarrow K_0C'$ given by $(A)_C$ \rightarrow (FA)_{C'} is well-defined and makes K₀F a functor into abelian groups

Now let (C, \perp) be a groupoid. For $A \in obj(C)$, we write $G(A) = C(A,A)$, the group of automorphisms of A. If f: $A \rightarrow B$ is an isomorphism, then we have a homomorphism $G(f)$: $F(A) \rightarrow G(B)$, given by $G(f)(\alpha) = f \alpha f^{-1}$.

We shall construct, out of C, a new category Ω C. we take $obj(\Omega C)$ to be the collection of all automorphisms of C. If $\alpha \in obj(\Omega C)$ is an automorphism of $A \in C$, we write (A, α) instead of α. A morphism $(A,\alpha) \rightarrow (B,\beta)$ in ΩC is a morphism $f : A \rightarrow B$ in C such that the diagram in Fig. 1 is commutative, that is G(f) $(\alpha) = \beta$. The product in ΩC is defined by setting $(A, \alpha) \perp (\beta, \beta) = (A \perp B, \alpha \perp \beta)$. The natural composition \circ is defined in Ω C as follows: if α , $\beta \in obj(\Omega C)$ are automorphisms of the same object in C, then $\alpha \circ \beta = \alpha \beta$ and:

$$
(\alpha \perp \beta) \circ (\alpha' \perp \beta') = \alpha \alpha' \perp \beta \beta'
$$

Definition 6: If (C, \perp) is a category with product, we define:

$$
K_1C = K_0 \Omega C
$$

If F: $C \rightarrow C'$ is a functor, then $\Omega F: \Omega C \rightarrow \Omega C'$, preserving product and composition, so we obtain homomorphisms $K_iF: K_iC \rightarrow K_iC', i = 0,1.$

 If P(R) is the category of finitely generated projective R-supermodules, where R is a supercommutative super-ring and their isomorphisms with \oplus . Then the tensor product $\hat{\otimes}_R$ is additive with respect to \oplus so that it induces on K₀ P(R) a structure of commutative ring.

 The next following results are just the generalizing of the results proved by H. Bass to the supercase.

Fig. 1: Set of morphisms

If $Z \in spec(R)$ (i.e., $Z \subseteq R$ is a prime superideal) and P∈ P(R), then P_Z is a free R_Z-supermodule and its rank is denoted by rk_P (Z). The map:

$$
rk_P: spec(R) \to \mathbb{Z}
$$

given by $Z \rightarrow r k_P$ (Z) is continuous and is called the rank of P. As R is a supercommutative super-ring, K_0 $P(R)$ and $Q \hat{\otimes}_R K_0 P(R) = QK_0 P(R)$ are rings with multiplication induced by $\hat{\otimes}_{R}$. Since:

$$
rk_{P\oplus Q} = rk_{P} + rk_{Q}
$$

and

$$
rk_{P\oplus_RQ}=rk_prk_Q
$$

We have a rank homomorphism:

$$
rk_P: K_0P(R){\rightarrow} C
$$

where C is the ring of continuous functions $spec(R) \rightarrow \mathbb{Z}$.

 The rank homomorphism rk is splitting by the ring homomorphism $C \rightarrow K_0 P(R)$, so that:

$$
K_0 P(R) \widetilde{=} C \ \oplus \widetilde{K_0} P(R)
$$

where, $\widetilde{K}_0 P(R) = \text{ker}(\text{rk})$ So:

$$
\mathbb{Q} \, \otimes_{\mathbb{Z}} \, K_0 P(R) \cong (\mathbb{Q} \otimes_{\mathbb{Z}} C) \, \oplus \big(\mathbb{Q} \, \otimes_{\mathbb{Z}} \, \widetilde{K_0} P(R) \,\big)
$$

 The next results generalize the results proved by H. Bass.

Theorem 3: Suppose max(R), the space of maximal superideals of R, is noetherian space of dimension d, then:

- If $x \in K_0P(R)$ and $rk(x) \ge d$, then $x = (p)_{P(R)}$ for some $P \in P(R)$
- If $rk((P)_{P(R)}) > d$ and if $(P_{P(R)}) = (Q_{P(R)})$, then $P \approx Q$
- $(\widetilde{K_0}P(R))^{d+1} = 0$

Proposition 3: The following conditions on Rsupermodule P are equivalent:

- P is a finitely generated projective supermodule over R and has zero ahnihlator
- $P \in P(R)$ and has every where positive rank

• ∃ a supermodule Q and a positive integer n such that $\hat{P \otimes_R Q} \approx R^n$

RESULTS AND DISCUSSION

Let $P(R)$ be the category of finitely generated projective supermodules over R , $Az(R)$ the category of Azumaya superalgebras over R and Prog(R) the category of finitely generated faithful projective Rsupermodules.

 A useful fact to be remember is that since R is supercommutative super-ring, $P \in Prog(R)$ if and only if $P \in Prog(R)$ and P is faithful. If $A, B \in Az(R)$ are equivalent in $BW(R)$ (the Brauer-Wall group of R), we will write $A \sim B$. If M is a supermodule over R, then nM is the n-fold direct sum of M. If $P \in P(R)$ let (P) be the image of P in $K_0 P(R)$ and $\{P\}$ in $\mathbb{Q} \otimes_{\mathbb{Z}} K_0 P(R) = \mathbb{Q}$ K_0 P(R). The next results generalize the results proved $by^[6]$.

Theorem 4: Let $P, P', Q \in P(R)$. Then:

 $P \in Prog(R)$ if and only if there is a Q in $P(R)$ such that $\widehat{P \otimes_R Q}$ is free

• If
$$
x \in \mathbb{Q}
$$
 K₀P(R) and $rk(x) > 0$ then $x = \left(\frac{1}{m}\right) \{Q\}$ for

some $Q ∈ Prog(R)$, m > 0 an integer

- If ${P} = {Q}$, $P \in Prog(R)$, then there is an integer $n > 0$ such that $nP \approx nQ$
- If Q∈ Prog(R) and $((P) (P'))(Q) = 0$ then there is an integer n > 0 such that $nP \approx nP'$
- If $P \in \text{Prog}(R)$ and rk_P is a square then there is an integer $n > 0$ and $Q \in Prog(R)$ such that $n^2 P \approx O\widehat{\otimes}_R O$

 Let R/S be Galois extension of supercommutative super-rings with finite Galois Group G. $M = M_0 + M_1$, an R-supermodule, has a G-action if there is a group injection $\varphi: G \to Aut(M)$ such that $\varphi(\sigma)$ is σ -linear for all $\sigma \in G$. That is, $\varphi(\sigma)(m_\alpha r_\beta) = \varphi(\sigma)(m_\alpha) \sigma(r_\beta)$. Let $M^G = \{m \in M : \varphi(\sigma)(m) = m \text{ for all } \sigma \in G\}$. The following fact was proved in^[1], if M∈ Prog(R), M^G Prog(S) then:

 $R \widehat{\otimes}_{S} M^{G} \cong M$

 Again let R/S be a Galois extension of supercommutative super-rings with Galois group $G = \{1, \sigma\}$. Let A be any central separable R-superalgebra, we define A^{σ} as follows, set $A^{\sigma} = A$ as a super-ring, but the

product by a scalar. on A^{σ} is defined by $\lambda a = \sigma(\lambda)a$ for all $\lambda \in \mathbb{R}$. Then one easily check that A^{σ} is a central separable R- superalgebra.

Now let $\tau : A^{\sigma} \widehat{\otimes}_{R} A \rightarrow A^{\sigma} \widehat{\otimes}_{R} A$, be defined by $\tau(a_{\alpha} \otimes b_{\beta}) = (-1)^{\alpha \beta} b_{\beta} \otimes a_{\alpha}$, then τ is a σ -linear automorphism. In particular τ is S-linear. Define the Corestriction:

$$
Tr(A) = \{ x \in A^{\sigma} \widehat{\otimes}_{R} A \mid \tau(x) = x \}
$$

 Obviously, Tr(A) is an S-superalgebra. But $by^{[3]}$ Tr(A) is an S-progenerator as an S-supermodule, if A is an R-progenerator as an R-supermodule. Moreover if A is central separable over R then $by^{[3]}$ Tr(A) is central separable over S.

Lemma 1: Let R/S be a Galois extension of supercommutative super-rings with Galois group $G = \{1, \sigma\}$. Let A, B be R-supermodules (superalgebras), P∈ $Prog(R)$:

- If A and B have G-action, so does $M = A\widehat{\otimes}_R B$ and $M^G = A^G \otimes_R B^G$
- Tr($A\widehat{\otimes}_R B$) \cong Tr(A) $\widehat{\otimes}_S$ Tr(B)
- If $E = \text{End}_{R}(P)$, $\text{Tr}(E) \cong \text{End}_{S}(\text{Tr}(P))$

Theorem 5: Let $A \in Az(R)$ and $P,Q \in Prog(A)$ such that $P \approx Q$ as R-supermodules. Then there is an integer $n > 0$ such that $nP \approx nQ$ as A-supermodules.

Proof: $\widehat{A\otimes_R}$ End_A(P) \cong End_R(P) \cong End_R(Q) \cong $\widehat{A\otimes_R}$ $\text{End}_{A}(Q)$. Tensoring by A° yields that:

$$
End_R(A) \otimes_R End_A(P) \cong End_R(A) \otimes_R End_A(Q)
$$

or

$$
End_A(A \otimes_R P) \cong End_A(A \otimes_R Q)
$$

where, A acts on $A \widehat{\otimes}_{R} P$ ($A \widehat{\otimes}_{R} Q$) by acting on P (Q). Using $[3]$, There is a rank one projective R-supermodule I, such that $A\widehat{\otimes}_R P \cong A\widehat{\otimes}_R Q \widehat{\otimes}_R I$ as A-supermodules. Theorem 4(a) implies that $mR\hat{\otimes}_RP \cong mR\hat{\otimes}_R Q \hat{\otimes}_R I$ as A-supermodules, for some $m > 0$ and $m'R \approx m'R \hat{\otimes}_R I$ as R-supermodules, for some different m′. Finally, $n = mm'$ will satisfy the theorem.

On a superalgebra A, a map $J: A \rightarrow A$ is called a superinvolution if J^2 is the identity and J is an

antiautomorphism. More explicitly, $(a_{\alpha})^{j^2} = a_{\alpha}$, $(a_{\alpha} + b_{\beta})^J = a_{\alpha}^J + b_{\beta}^J$ and $(a_{\alpha} b_{\beta})^J = (-1)^{\alpha \beta} b_{\beta}^J a_{\alpha}^J$ for all a_{α} , $b_{\beta} \in A$. Let $C = \hat{Z}(A)$ (the super-center of A) then J must preserve C. If J is the identity on C, J is a superinvolution of the first kind. If not, J induces an automorphism of C of order 2 and J is said to be of the second kind. Two superinvolutions J, J' which agree on C are said to be of the same kind.

The following theorem generalizes of $[6]$.

Theorem 6: If $A \in Az(R)$ and $A \widehat{\otimes}_R A \sim 1$, then there is a B∈ Az(R), such that $B \sim A$ and $B \cong B^\circ$.

Another way of viewing an isomorphism $B \cong B^{\circ}$ is that B has an antiautomorphism, J, of the first kind. Now, we are ready to prove the following result.

Theorem 7: Suppose A is a super-ring with antiautomorphism \overline{J} such that J^2 is inner, induced by a $w_0 \in A_0$ such that $w_0 (w_0)^J = (w_0)^J w_0 = 1$. Then $M_2(A)$ has a superinvolution of the same kind.

Proof Let L be the inverse map to J. Since:

$$
w_0^{-1}a_\alpha w_0 = (a_\alpha)^{J^2}
$$

We have $(a_{\alpha})^J (w_0)^J = (w_0)^J (a_{\alpha})^L$ and $(a_{\alpha})^{\text{L}} w_0 = w_0 (a_{\alpha})^{\text{J}}$, so the map:

$$
\begin{pmatrix} a_{\alpha} & b_{\alpha} \\ c_{\alpha} & d_{\alpha} \end{pmatrix} \mapsto \begin{pmatrix} (d_{\alpha})^{J} & (w_{0})^{J} (b_{\alpha})^{L} \\ w_{0} (c_{\alpha})^{J} & (a_{\alpha})^{L} \end{pmatrix}
$$

Is a superinvolution on $M₂A$ of the same kind of J.

 Next we try to find the conditions on a central separable R-superalgebra A to have a superinvolution of the second kind, if R is a connected super-ring. In the next theorem we try to find the conditions on $A=$ End_R(P) to have a superinvolution of any kind, where P is an R-progenerator as a supermodule over R, if R is a connected super-ring.

 The following theorem involves assuming that R, the base super-ring, is semilocal. We will use the fact, from^[5], that if A, B are central separable R-algebras, $A \sim B$ and the rank of A equals rank of B, then $A \cong B$, which is also true in the superalgebra case (i.e., if A, B are central separable R-superalgebras, $A \sim B$ and the rank of A equals rank of B, then $A \cong B$). Let M be the Jacobson radical of R. Then $\overline{A} = A/MA$ is a finite direct sum of simple superalgebras. We call \overline{A} is perfect if every simple subsuperalgebra of \overline{A} admits a superinvolution of the second kind.

Theorem 8: Suppose R is a connected semilocal superring and A is a central separable R-superalgebra. Suppose R/S is a Galois extension with Galois group ${1, \sigma}$. Then A has a superinvolution of the second kind extending σ if and only if Tr(A) ~ 1 and \overline{A} is perfect.

Proof: Suppose A has a superinvolution, *, extending σ. Then it is easy to Check that \overline{A} is perfect. Also * induces an isomorphism $A^{\sigma} \cong A^{\circ}$, so there is an isomorphism:

$$
\phi\colon A^\sigma\widehat\otimes_R A\to End_R\left(A\right)
$$

given by $x_{\gamma} (a_{\alpha} \otimes b_{\beta})^{\varphi} = (-1)^{\alpha \gamma} a_{\alpha}^{*} x_{\gamma} b_{\beta}$. Set $A' = A'_{0} + A'_{1}$, where $A'_{\alpha} = \{a_{\alpha} \in A_{\alpha} : a_{\alpha}^{*} = a_{\alpha}\}\.$

Since $*$ is σ -linear R-supermodule automorphism of A, the S-supermodule A' is an S progenerator as a module over S. φ induces an isomorphism $Tr(A) \cong End_s(A')$, hence $Tr(A) \sim 1$.

 Conversely, since R is a connected semilocal super-ring, one easily sees that S is a connected semilocal super-ring also. Let $Tr(A) \cong End_s(P)$. In other words let $\tau : A^{\sigma} \hat{\otimes}_{R} A \rightarrow A^{\sigma} \hat{\otimes}_{R} A$ given by $(a_{\alpha} \otimes b_{\beta})^{\dagger} = (-1)^{\alpha\beta} b_{\beta} \otimes a_{\alpha}$, be a σ -linear automorphism. Then Tr(A) is the fixed super-ring of $A^{\sigma} \hat{\otimes}_{R} A$ under τ . Say $Tr(A) \cong End_S(P)$, where Pis an S-progenerator as a supermodule over S. Then $A^{\sigma} \widehat{\otimes}_{R} A \cong R \widehat{\otimes}_{R} End_{S}(P) \cong End_{R}(R \widehat{\otimes}_{S} P)$ and if $\varphi = \sigma \otimes 1 : R \widehat{\otimes}_s P \to R \widehat{\otimes}_s P$, then $(x_{\gamma}(a_{\alpha} \otimes b_{\beta}))^{\varphi} = x_{\gamma}^{\varphi}(a_{\alpha} \otimes b_{\beta})^{\tau}$, for all $x_{\gamma} \in R \widehat{\otimes}_{S} P$ and $a_{\alpha} \otimes b_{\beta} \in A^{\sigma} \widehat{\otimes}_{R} A$. Since R is connected, $rank_{p}(A) = rank_{p}(A^{\sigma})$, but:

$$
A^\sigma \widehat{\otimes}_R A \cong End_R\left(R \widehat{\otimes}_S P\right)
$$

Therefore:

$$
A^\sigma \widehat{\otimes}_R (A \widehat{\otimes}_R A^\circ) \cong A^\sigma \widehat{\otimes}_R End^{}_R (A) \cong End^{}_R (R \widehat{\otimes}_S P) \widehat{\otimes}_R A^\circ
$$

So by^[5], $A^{\sigma} \cong A^{\circ}$, which implies that $\text{End}_{R}(A) \cong \text{End}_{R}(R \widehat{\otimes}_{S} P)$, but the R-rank of A equals the R-rank of $R \widehat{\otimes}_{S} P$. So again by^[5], $A \cong R \widehat{\otimes}_{S} P$. In other words, A has a σ -linear antiautomorphism J such that for all a_{α} , x_{γ} , b_{β} in A, setting x_{γ} $(a_{\alpha} \otimes b_{\beta}) = (-1)^{\alpha \lambda} a_{\alpha}^{\beta} x_{\gamma} b_{\beta}$ yields the isomorphism $A^{\sigma} \otimes_R A \cong End_R(A)$ and the map $\varphi : \sigma \otimes 1 : A \cong R \widehat{\otimes}_S P$ $\to A$ satisfies $\varphi^2 = 1$ and $(x_{\gamma} (a_{\alpha} \otimes b_{\beta}))^{\varphi} = x_{\gamma}^{\varphi} (a_{\alpha} \otimes b_{\beta})^{\tau}$. Therefore:

$$
(-1)^{\alpha\lambda}(a^J_{\alpha}x_{\gamma}b_{\beta})^{\varphi} = (-1)^{\alpha\beta}x^{\varphi}_{\gamma}.(b_{\beta}\otimes a_{\alpha}) = (-1)^{\beta(\alpha+\gamma)}b^J_{\beta}x^{\varphi}_{\gamma}a_{\alpha}
$$

(φ respects the grading). For $w = 1^{\varphi} \in A_0$ we have $ww^J = w^Jw = 1$ and $wa_\alpha w^{-1} = a_\alpha^{J^2}$ and:

$$
\varphi^2 = 1, \ (a_\alpha^J x_\gamma b_\beta)^\varphi = (-1)^{\alpha \lambda} (-1)^{\beta(\alpha + \gamma)} b_\beta^J x_\gamma^\varphi a_\alpha \qquad \qquad (1)
$$

Lemma 2: Let A be a central separable R-superalgebra, with J and φ satisfying (1). Then A has a superinvolution agreeing with J on R if φ fixes a unit of A_{a} .

Proof: If u_a is a unit in A_a such that $u_\alpha^{\varphi} = u_\alpha$ then $u_{\alpha} = (1.u_{\alpha})^{\circ} = u_{\alpha}^{J}w$, so $(u_{\alpha}^{J})^{-1}u_{\alpha} = w$ $(u_{\alpha}^{\mathrm{J}})^{-1}u_{\alpha} = w$, but $(u_{\alpha}^{J})^{-1} = (-1)^{\alpha} (u_{\alpha}^{-1})^{J}$, therefore $w = (-1)^{\alpha} (u_{\alpha}^{-1})^{J} u_{\alpha}$, implying that $x_{\gamma}^{j} = u_{\alpha}^{-1} x_{\gamma}^{j} u_{\alpha}$ is a superinvolution since J' is an antiautomorphism on A and:

$$
(\mathbf{x}_{\gamma}^{j'})^{j'} = \mathbf{u}_{\alpha}^{1}(\mathbf{u}_{\alpha}^{-1}\mathbf{x}_{\gamma}^{j}\mathbf{u}_{\alpha})^{j}\mathbf{u}_{\alpha} = (-1)^{\alpha}\mathbf{u}_{\alpha}^{-1}(\mathbf{u}_{\alpha}^{j}\mathbf{x}_{\gamma}^{j^{2}}(\mathbf{u}_{\alpha}^{-1})^{j})\mathbf{u}_{\alpha}
$$

= $\mathbf{u}_{\alpha}^{-1}\mathbf{u}_{\alpha}^{j}(\mathbf{w}\mathbf{x}_{\gamma}\mathbf{w}^{-1})\mathbf{w}$
= \mathbf{x}_{γ} , since $\mathbf{u}_{\alpha}^{-1}\mathbf{u}_{\alpha}^{j} = \mathbf{w}^{-1}$

Continuing proof of the theorem: Let M be the jacobson radical of R. Then $\overline{A} = A/MA$ is a finite direct sum of simple superalgebras. On \overline{A} , φ and J induce maps $\overline{\varphi}$ and \overline{J} satisfying (1). Every preimage of a unit \overline{u}_{α} of \overline{A} is a unit u_{α} of A_{α} . Thus we can change J by conjugation with a unit u_a , to make \bar{J} any desired antiautomorphism of A of the same kind. In fact, if J is defined by $x_{\gamma}^{j} = u_{\alpha}^{-1} x_{\gamma}^{j} u_{\alpha}$, we can find a corresponding φ so that J, φ satisfy (1). Specifically if L is the inverse map to J, we can set $x_{\gamma}^{\varphi} = u_{\alpha}^{-1} x_{\gamma}^{\varphi} u_{\alpha}^{L}$, to show that we have:

$$
(\mathbf{x}_{\gamma}^{\varphi})^{\varphi} = \mathbf{u}_{\alpha}^{-1} (\mathbf{u}_{\alpha}^{-1} \mathbf{x}_{\gamma}^{\varphi} \mathbf{u}_{\alpha}^{L})^{\varphi} \mathbf{u}_{\alpha}^{L}
$$

$$
= (-1)^{\alpha} \mathbf{u}_{\alpha}^{-1} (\mathbf{u}_{\alpha}^{L1} \mathbf{x}_{\gamma} \mathbf{z}_{\alpha}) \mathbf{u}_{\alpha}^{L}
$$

where $z_\alpha^J = u_\alpha^{-1}$ and hence $z_\alpha = z_\alpha^{J\!L} = (u_\alpha^{-1})^L$, so that $(x_{\gamma}^{\phi})^{\phi} = (-1)^{\alpha} x_{\gamma} (u_{\alpha}^{-1})^{\alpha} u_{\alpha}^{\alpha} = x_{\gamma} \text{ since } (-1)^{\alpha} (u_{\alpha}^{\alpha})^{-1} = (u_{\alpha}^{-1})^{\alpha}$. It suffices to find \overline{u}_{α} of \overline{A} such that $(\overline{u}_{\alpha})^{\circ} + \overline{u}_{\alpha}$ is a unit, for if u_{α} is a preimage of $\overline{u_{\alpha}}$, then $(u_{\alpha})^{\circ} + u_{\alpha}$ will be a φ fixed unit of A_a. Since \overline{A} is perfect, it suffices to prove.

Lemma 3: Let \overline{A} be a finite dimensional central simple superalgebra over a field F with a superinvolution J of the second kind and any associated φ to J then there is an element a_{α} in A_{α} such that $(a_{\alpha})^{\varphi}$ + a_{α} is a unit.

Proof: The element $w = 1^\circ$ is central since J is a superinvolution. If $w \ne -1$, then $a_0 = 1$ will do. If w = -1, then $(\bar{a}_{\alpha})^{\circ} = (\bar{a}_{\alpha})^J$ w = $(\bar{a}_{\alpha})^J$. Since J is of order 2 on F, there is f in F such that $f - f' \neq 0$, so again take $\frac{1}{a_0} = f - f'$.

Lemma 4: Suppose Q is a right $A^e = A^0 \hat{\otimes}_R A$ supermodule, then:

$$
Q = M \oplus I
$$

where, M is the R-subsupermodule of Q generated by all elements of the form $(a_{\alpha} \otimes 1-i \otimes a_{\alpha})q_{\beta}$, where $a_{\alpha} \in A_{\alpha}$ and $q_{\beta} \in Q_{\beta}$. If Q is R-projective as a supermodule over R then:

rank $_{\rm R}$ (A).rank $_{\rm R}$ (I) = rank $_{\rm R}$ (Q).

Proof: Consider the well-known split exact sequence of A^e -supermodules:

$$
0\to J\to A^e\!\stackrel{\mu}{\longrightarrow}\! A\to 0
$$

where, $\mu(a_{\alpha} \otimes b_{\beta}) = a_{\alpha} b_{\beta}$ and J is a right super-ideal of A^e generated by all elements of the form $a_{\alpha} \otimes 1$ -1 $\otimes a_{\alpha}$ where $a_{\alpha} \in A_{\alpha}$. Suppose Q is a right A^e -supermodule. Tensoring by Q over A^e yields a split exact sequence of R-supermodules:

$$
0\to Q\widehat{\otimes}_{A^c}J\to Q\widehat{\otimes}_{A^c}A^c\frac{\ _{1\otimes\mu}}{\longrightarrow}Q\widehat{\otimes}_{A^c}A\to 0
$$

of course, $Q\widehat{\otimes}_{A^e}A^e \cong Q$ under the map $a_{\alpha} \otimes z_{\beta} \mapsto a_{\alpha}z_{\beta}$. Under this isomorphism $Q\widehat{\otimes}_{A^c}J$ is mapped onto M defined above. Thus $Q \cong M \oplus I$, where $I \cong Q \widehat{\otimes}_{A^c} A$. But:

$$
I\widehat{\otimes}_R A\cong Q\widehat{\otimes}_{\scriptscriptstyle{A^c}}(A\widehat{\otimes}_R A)\cong Q\widehat{\otimes}_{\scriptscriptstyle{A^e}}(A^{\scriptscriptstyle \circ}\widehat{\otimes}_R A)
$$

as an R-supermodules, therefore, $I\widehat{\otimes}_{R} A \cong Q\widehat{\otimes}_{A^c} A^c \cong Q$.

 Suppose R is a local supercommutative super-ring, σ an automorphism of R of order 2, P is an Rprogenerator as a supermodule over R and I a rank one R-projective supermodule. A morphism $e: P \widehat{\otimes}_R P \to I$ is called a bilinear I form on P, a morphism $e: P^{\sigma} \widehat{\otimes}_{R} P \to I$ is called a σ bilinear I form on P. The image $e(p_0 \otimes q_0)$ is often written as $e(p_{\alpha}, q_{\beta})$ and in either case, e can be thought of as a map $e: P \times P \rightarrow I$. Such a form induces a map $e^*: P \to \text{Hom}_{R}(P, I)$ $(P^{\sigma} \to \text{Hom}_{R}(P, I))$ given by $e^*(p_\alpha)(q_\beta) = e(p_\alpha, q_\beta)$. In a similar manner, we define $e_* : P \to \text{Hom}_R(P, I)$ $(P \to \text{Hom}_R(P^{\sigma}, I))$ given by $e_*(p_\alpha)(q_\beta) = e(p_\alpha, q_\beta)$. If e^* and e_* are isomorphisms then we say e is nondegenerate. The next final result shows that the existence of superinvolutions on $\text{End}_{R}(p)$, where $\text{End}_{R}(p)$ is an R-progenerator as a supermodule over R, is equivalent to the existence of forms on P and this result was proved $in^{[1]}$.

Theorem 9: Let R be a connected super-ring and $A = End_B(p)$ be a central separable R-superalgebra such that A is an R-progenerator as a supermodule over R, then:

- A has a superinvolution of the first kind if and only if there is a rank one R-projective I, a nondegenerate bilinear I form e on P and a $\delta \in R_0$ such that $\delta^2 = 1$ and $e(x_\alpha, y_\beta) = (-1)^{\alpha\beta} \delta e(y_\beta, x_\alpha)$ for all x_{α}, y_{β} in P
- Let σ be an automorphism of R of order 2. Then A has a superinvolution of the second kind extending σ if and only if there is a rank one R-projective I with a σ -linear automorphism of order 2 (also called σ) a σ -bilinear I form e on P and an element δ in R₀ such that $σ(δ)δ = 1$ and $\sigma(e(x_\alpha, y_\beta)) = (-1)^{\alpha\beta} \delta e(y_\beta, x_\alpha)$ for all x_α, y_β in P

CONCLUSION

The extended two results proved by Saltman^[6] to the supercase and the algebraic K-theory of projective supermodules over (torsion free) supercommutative super-rings would help any researcher to classify further properties about projective supermodules.

REFERENCES

- 1. Jaber, A., 2003. Superinvolutions of Associative Superalgebras, P.h. D. thesis, University of Ottawa, Ottawa, Canada, 2003.
- 2. Childs, L.N., G. Garfinkel and M. Orzech, 1973. The brauer group of graded azumaya algebras, Trans. Am. Math. Soc., 175: 299-326. DOI: 10.1007/BFb0077340
- 3. DeMeyer, F. and E. Ingraham, 1971. Separable Algebras Over Commutative Rings, L.N.M. 181, Springer-Verlag, New York, USA., ISBN: 9783540053712, pp: 172.
- 4. Racine, M.L., 1998. Primitive superalgebras with superinvolution, J. Algebra, 206: 588-614. DOI: 10.1006/JABR.1997.7412
- 5. Roy, A. and R. Sridharan, 1967. Derivations in azumaya algebras. Math. Kyot. Univ., 72: 161-167.
- 6. Saltman, D.J., 1978. Azumaya algebras with involution. J. Algebra, 52: 526-539. DOI: 10.1016/0021-8693(78)90253-3