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Abstract: Liver cancer is one of the leading causes of mortality worldwide, 

and early detection using CT imaging plays a critical role in patient survival. 

However, the quality of CT scans is often degraded by noise, particularly in 

low-dose imaging intended to minimize radiation exposure. This study 

presents a comprehensive comparison of three multiresolution transform 

techniques, namely the wavelet, curvelet, and contourlet transforms, for 

denoising liver CT images. The performance of these methods was evaluated 

using multiple quantitative metrics (PSNR, SNR, and NCC) under varying 

noise levels, complemented by detailed qualitative assessments of the 

reconstructed images. Statistical analysis demonstrated that the curvelet 
transform achieved significantly superior results (p<0.01) compared with 

wavelet and contourlet methods across all noise variances. For each 

transform, threshold parameter choices were carefully examined, with a 

focus onthe BayesShrink thresholding rule applied consistently in all cases. 

Visual analysis further confirmed that curvelet-based denoising preserved 

more anatomically relevant structures, including liver regions, vessel details, 

and tissue textures. These findings underscore the value of curvelet 

transforms for enhancing image quality in Computer-Aided Diagnosis 

(CAD) systems for liver pathologies, ensuring diagnostic features are 

maintained while effectively suppressing noise. 

 

Keywords: Liver CT Images, Image Denoising, Wavelet Transform, 

Curvelet Transform, Contourlet Transform, Bayesshrink Thresholding 

 

Introduction 

Cancer arises when cells grow in an uncontrolled 

manner and may spread to other parts of the body through 

the bloodstream or the lymphatic system. Reports from the 

World Health Organization further confirm that liver 

cancer remains a major global health concern, accounting 

for approximately 7.6 million deaths worldwide in 2008 
and 8.2 million deaths in 2012 (World Health 

Organization, 2014). 

The disease occurs more frequently in sub-Saharan 

Africa and Southeast Asia than in Western countries. Each 

year, over 700,000 new cases are reported, and around 

600,000 patients die from this cancer worldwide. Patient 

survival is strongly linked to the stage at which the tumor 

is identified, which makes early detection of malignant 

regions crucial. 

A wide range of imaging techniques is available for 

identifying and characterizing liver tumors, such as 

ultrasonography, Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), and Positron Emission 

Tomography (PET). Among these, CT is preferred for 

evaluating extra-hepatic abdominal structures due to its 

superior sensitivity and specificity (Lindenbaum et al., 

1994). 

 However, CT image quality depends directly on 

radiation dose. While higher doses improve image clarity, 

they also increase patient exposure to x-rays, raising the 

risk of radiation-induced cancer (Gabralla et al., 2015). 

Dose reduction is therefore essential, but lower doses often 

result in images with reduced contrast and greater 

vulnerability to noise, particularly Gaussian and speckle 

noise (Donoho and Johnstone, 1994; Donoho, 1995). 
Image denoising plays a critical role in Computer-

Aided Diagnosis (CAD) systems. Its objective is to 

suppress random noise and irrelevant information while 

retaining diagnostically valuable image details. A wide 

range of denoising approaches has been proposed in the 
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literature for addressing low-dose CT artifacts. These 

include smoothing models (Kim et al., 2007), anisotropic 

diffusion filters (Alvarez et al., 1992; Perona and Malik, 

1990), neighborhood-based adaptive methods (Perona and 

Malik, 1990; Rudin et al., 1992), total variation 
minimization (Oliva, 2004), and frequency-domain 

strategies such as empirical Wiener filtering and wavelet 

thresholding (Tomasi and Manduchi, 2002), as well as 

neighborhood-based adaptive methods (Perona and Malik, 

1990; Rudin et al., 1992). 

Total variation minimization (Rudin et al., 1992), and 

frequency-domain strategies such as empirical Wiener 

filtering and wavelet thresholding (Tomasi and Manduchi, 

2002). This study compares three multiresolution 

transforms, namely the wavelet, curvelet, and contourlet 

transforms, for denoising liver CT images. Although each 

of these methods has been applied individually in medical 

image denoising, a systematic comparison focused 

specifically on liver CT images has not been fully 

explored. The contribution of this work is to provide a 

comprehensive evaluation of these transforms using 

several quality measures, including PSNR, SNR, and 

NCC, across different noise levels, thereby clarifying their 

relative effectiveness in processing noisy CT images. The 

denoising procedure involves two main stages: 

Multiresolution transformation and thresholding, with 

parameters tailored to each transformation. 

Background Theory 

Multiresolution methods provide frequent information 

on different scales, orientation and locations. They can be 

successfully used to denoise, enhance and analyze 

images. This section briefly reviews the techniques 

involved in this study, including the wavelet transform, 

the curvelet transform and the contourlet transform. 

Wavelet Transform 

Wavelets are functions generated from one single 

function Ψ by dilations and translations. The basic idea of 

the wavelet transformation is to characterize any function 

by superposition of wavelets. The translated and dilated 

wavelet functions derived from the mother wavelet Ψ are 

given by Equation (1): 
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Here, a represents the scale coefficient and b 

represents the translation coefficient.  

The wavelet transform of the signal x(t) is given by 
Equation (2): 
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Where the function Ψ a, b must be square integrable 

and must have compact support.  

Discrete Wavelet Transform (DWT) provides 

multiscale analysis by dividing an image into sub-bands 

that capture both spatial and frequent information. At the 

first decomposition level (Fig. 1a), the image is separated 

into four sub-bands: LH1, HL1, and HH1, which contain 

fine detailed information, and LL1, which represents the 

approximation of the image at a coarser scale. The LL1 

sub-band is then further decomposed to generate the next 

level of coefficients, producing a two-level 

decomposition (Fig. 1b). This hierarchical process can be 

repeated (LL2, LL3, etc.) until the desired resolution is 

achieved. 

The basic principle of denoising wavelets was first 

proposed by Donoho and Vetterli in [9, 10], where he 

thresholds the wavelet coefficients to zero if their values 

are below a certain threshold. 

The Curvelet Transform 

Although Discrete Wavelet Transform (DWT) has 

proven highly effective for mathematical analysis and 

image processing, its limited directional sensitivity 

restricts its usefulness in many tasks. To address this, 

Candes and Donoho introduced the ridgelet transform in 

1999, which is particularly suited for representing 

straight-line singularities (Candes, 1999; Candes and 

Donoho, 1999a). While ridgelets offer flexibility in 

handling higher-dimensional singularities, their 

application is limited because real-world images rarely 

contain purely global straight edges (Candes and Donoho, 

1999b). To overcome these limitations, the curvelet 

transform was developed as a multiscale, orientation-

based approach that provides an efficient sparse 

representation of edges and curves. This technique 

combines filtering with a localized ridgelet transform to 

enhance edge representation in images (Ma and Plonka, 

2009). 

 
 

 

 

Fig. 1: DWT for the Liver image : (a) First Level and (b) Second 
Level 

LL1 HL1 

LH1 HH1 

LL2 HL2 

LH2 HH2 
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In R2, ridge lets are constant along ridge lines of 

Equation 3 and are wavelets (with a scale s) along the 

orthogonal direction: 

 

1 2cos( ) sin( )x x const    (3) 

 

Thus, the curvelet decomposition is obtained by 

following these steps [4]: 

 

1. Sub band decomposition of the object into a sequence 

of sub bands 

2. Windowing each sub band into blocks of appropriate 

size, depending on its center frequency 

3. Applying the ridge lets them transform to these 

blocks 

 

The Contourlet Transform 

 The contourlet transform offers a representation of 

images across multiple scales and orientations. It is 

implemented using two filter banks: The Laplacian 

Pyramid (LP) and the Directional Filter Bank (DFB) 

(Fig. 3). The LP generates a multiscale description of 

the image by producing a low-pass version along with 
a corresponding high-pass component at each level (Do 

and Vetterli, 2005). The high-pass sub-band is then 

analyzed using the DFB to capture directional 

information and to connect isolated point 

discontinuities into line-like structures. Different 

implementations of DFBs exist in the literature (Po and 

Do, 2006); one common approach is the k-level binary 

tree decomposition, which produces 2𝑘directional sub-

bands with wedge-shaped frequency partitions, as 

shown in Figures 4 and 5. 

Figure 2: Shows an example of the curvelet 

transformation. 

 

 
 
Fig. 2: Curvelet transform with 2 levels and 8 orientations 

 
 
Fig. 3: Filter Banks of the Contourlet Transform 
 

 
 
Fig. 4:  Laplacian pyramid : One-level decomposition and 

reconstruction. H and G are called lowpass analysis and 
synthesis filters, M is the sampling matrix. a is a coarse 

approximation and b is a difference between the original 
image f and its prediction 

 

 
 
Fig. 5:  Three-level frequency partition. In the 23 = 8 wedge-

shaped frequency bands: 0–3: the mostly vertical 
directions; 4–7: the mostly horizontal directions 

 

Methods 

As illustrated in Fig. 6, the proposed framework 

applies a multi-level decomposition scheme for each of 
the three transforms (wavelet, curvelet, and contourlet). 

At every decomposition level, suitable thresholds are 

determined, and soft thresholding is applied specifically 
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to the detail sub-bands, while the approximation sub-band 

is excluded from thresholding. 

Thresholding is a key step in transform-domain image 

denoising, as it governs how noise is suppressed while 

retaining important image features. Two main approaches 
are widely used: Hard thresholding and soft thresholding. In 

the hard-threshold method, all coefficients with magnitudes 

below a given threshold T are discarded, while those above 

the threshold are retained, as expressed in Eq. (4): 

 

δhard(x) = {
𝑥, 𝑖𝑓|𝑥| > 𝑇
0, 𝑖𝑓|𝑥| ≤ 𝑇

 (4) 
 

In contrast, the soft-threshold approach (also called 

shrinkage) reduces the magnitude of coefficients above T 

by the threshold value itself, which is formally defined in 

Eq. (5): 
 

δsoft(x) = {
sign(x)(|x| −  T), 𝑖𝑓|𝑥| > 𝑇

0, 𝑖𝑓|𝑥| ≤ 𝑇
 (5) 

 
In this work, we apply the BayesShrink rule across all 

three transforms. BayesShrink is an adaptive, subband-
specific thresholding scheme that estimates thresholds by 

minimizing Bayesian risk, assuming the wavelet 

coefficients in each subband follow a Generalized 

Gaussian Distribution (GGD). 

 

 
 
Fig. 6: Proposed denoising scheme 

The BayesShrink threshold is computed using the 

formula: 
 

𝑇 =
𝜎2

𝜎𝑥
  (6) 

 
Where σ² is the noise variance and σx is the standard 

deviation of the signal in the subband. This adaptive 

thresholding approach provides better edge preservation 

compared to universal thresholding methods like 

VisuShrink, making it particularly suitable for medical 

images where preserving structural details is crucial. 

The overall denoising procedure consists of the 

following stages: 
 
1. Apply the selected multi-resolution transform 

(wavelet, curvelet, or contourlet) to the noisy image 

2. Estimate the noise variance for each sub-band 

3. Compute the BayesShrink threshold corresponding 

to each sub-band 

4. Apply soft thresholding to the transform coefficients 

5. Perform the inverse transform to reconstruct the 

denoised image 
 

Noise in most CT images can be approximated as 

additive zero-mean white Gaussian noise. The noisy 

image can be written as: 
 

Xnoisy = Xori + G 
 

Where Xori is the original image to be recovered and 
G is the white noise: G(i,j) ~ N(0,σ²). In this study, the 

random noise in Eq. (6) is assumed to be distributed across 

all multi-resolution sub-bands, meaning that all 

coefficients are considered to include noise. 

Experimental Results and Analysis 

The goal of the experiments is to make comparisons 

among the multiresolution methods through revealing the 

difference between the original and the denoised images. 

The standard grayscale test images were chosen from the 

Liver database, which are captured by simulated additive 

Gaussian white noise at five different power levels σ = 

[10, ,20, 30, 40, and 50]. We objectively measured the 

experimental results by the peak signal-to-noise ratio 

(PSNR) in decibels (dB) and by Signal to Noise Ratio 

(SNR), which are defined as:  
 

2255

10PSNR  10 x log   
MSE

 
  

 
 

 (7) 

 
Where: 

 

M N
2

or den

i 1 j 1

1
SE    

MxN (X (i,j) - X (i,j))

M
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


 (8) 

 
Xor (i, j) is the original image, Xden (i,j) is the estimated 

noise-free image, and MxN is the number of pixels: 
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2

10 2
NR  10xlog   ori

den

S




 
  

 
 (9) 

 

Where σori and σden are variances of Xori and X den. In 

addition, we also calculate the Normalized Cross 

Correlation coefficient. This index informs about the 

relativity of the denoised image with original image. It is 

a measure of similarity of two images. Normally NCC is 

in the range of 0 to 1, very near to 1 is the best. This is 

also known as a sliding dot product or sliding inner 

product. It is expressed as: 
 

M N

i 1 j 1

M N
2

i 1 j 1

( , ). ( , )

CC  

( , ).

ori den

ori

X i j X i j

N

X i j

 

 






 (10) 

 
The wavelets employed in the experiments are 

Daubechies, Haar, Symlet, and Coiflet. The results are 

given in Tables 1-3, Figs. 7-8.  
 
Table 1: Results obtained for the gaussian noise with wavelet transform 

 
Noise Levels 

 
Wavelet 

 
Wavelet level 

Results 

PSNR (dB) SNR NCC 

 
 

 
 
 
 
10 

Noisy 29,442 18,305 0,933 
Haar 2 27,786 16,650 0,985 

Haar 3 26,885 15,749 0,978 
Haar 4 26,510 15,373 0,973 
Db4 2 29,048 17,911 0,989 
Db4 3 27,944 16,808 0,984 
Db4 4 27,461 16,324 0,979 
Symlet 4 2 29,109 17,972 0,989 
Symlet 4 3 28,033 16,896 0,984 
Symlet 4 4 27,550 16,413 0,979 

Coifflet 4 2 29,191 18,054 0,989 
Coifflet 4 3 28,083 16,947 0,984 
Coifflet 4 4 27,595 16,458 0,980 

 
 
 
 
 
 

20 

Noisy 23,495 12,358 0,996 
Haar 2 25,208 14,071 0,978 
Haar 3 24,079 12,942 0,967 
Haar 4 23,487 12,350 0,958 
Db4 2 26,437 15,300 0,984 
Db4 3 25,180 14,043 0,975 

Db4 4 24,450 13,314 0,967 
Symlet 4 2 26,492 15,356 0,984 
Symlet 4 3 25,212 14,076 0,975 
Symlet 4 4 24,506 13,370 0,967 
Coifflet 4 2 26,566 15,430 0,985 
Coifflet 4 3 25,318 14,181 0,976 
Coifflet 4 4 24,598 13,462 0,968 

 

 
 
 
 
 
30 

Noisy 20,011 8,875 0,994 

Haar 2 23,697 12,560 0,976 
Haar 3 22,598 11,462 0,962 
Haar 4 21,863 10,727 0,949 
Db4 2 24,714 13,577 0,983 
Db4 3 23,635 12,499 0,972 
Db4 4 22,798 11,661 0,960 
Symlet 4 2 24,739 13,602 0,983 
Symlet 4 3 23,605 12,468 0,971 

Symlet 4 4 22,784 11,647 0,960 
Coifflet 4 2 24,815 13,678 0,983 
Coifflet 4 3 23,727 12,591 0,972 
Coifflet 4 4 22,919 11,783 0,962 

 
 
 
 

 
 
40 

Noisy 17,620 6,481 0,992 
Haar 2 22,454 11,317 0,973 
Haar 3 21,518 10,381 0,956 
Haar 4 20,706 9,569 0,940 

Db4 2 23,268 12,132 0,979 
Db4 3 22,467 11,330 0,967 
Db4 4 21,578 10,441 0,953 



Majzoob Kamalaldin Omer Abdalrahman / Journal of Computer Science 2026, 22 (1): 100.110 

DOI: 10.3844/jcssp.2026.100.110 

 

105 

Symlet 4 2 23,270 12,133 0,979 

Symlet 4 3 22,421 11,285 0,966 

Symlet 4 4 21,557 10,420 0,953 

Coifflet 4 2 23,335 12,199 0,980 

Coifflet 4 3 22,531 11,395 0,968 

Coifflet 4 4 21,698 10,561 0,955 

 
 
 
 

 
 
50 

Noisy 15,781 4,629 0,991 

Haar 2 21,285 10,149 0,970 

Haar 3 20,595 9,459 0,953 

Haar 4 19,748 8,611 0,934 

Db4 2 21,924 10,787 0,977 

Db4 3 21,463 10,326 0,964 

Db4 4 20,576 9,440 0,948 

Symlet 4 2 21,932 10,795 0,977 

Symlet 4 3 21,394 10,258 0,963 

Symlet 4 4 20,535 9,398 0,948 

Coifflet 4 2 21,980 10,843 0,977 

Coifflet 4 3 21,525 10,389 0,965 

Coifflet 4 4 20,685 9,548 0,950 

 

Table 2: Results obtained for the gaussian noise with contourlet transform 

Noise Contourlets Results 

Level Pfilt Dfilt PSNR SNR NCC 

10 

Noisy 29,442 18,305 0,933 

Haar '5-3' 29.4441 18.2735 0.9985 

Haar CD 29.4443 18.2737 0.9985 

Haar pkva 29.4442 18.2735 0.9985 

Db4 5-3' 29.4592 18.2885 0.9986 

Db4 CD 29.4604 18.2897 0.9986 

Db4 pkva 29.4599 18.2893 0.9986 

20 

Noisy 23,495 12,358 0,996 

Haar '5-3' 23.5418 12.3712 0.9960 

Haar CD 23.5468 12.3762 0.9960 

Haar pkva 23.5435 12.3728 0.9960 

Db4 5-3' 23.5261 12.3555 0.9965 

Db4 CD 23.5314 12.3608 0.9965 

Db4 pkva 23.5266 12.3560 0.9965 

30 

Noisy 20,011 8,875 0,994 

Haar '5-3' 20.2056 9.0350 0.9933 

Haar CD 20.2217 9.0510 0.9933 

Haar pkva 20.2108 9.0401 0.9934 

Db4 5-3' 20,21 9,04 0,99 

Db4 CD 20,23 9,06 0,99 

Db4 pkva 20,22 9,05 0,99 

40 

Noisy 17,620 6,481 0,992 

Haar '5-3' 17.9434 6.7727 0.9921 

Haar CD 17.9827 6.8120 0.9922 

Haar pkva 17.9689 6.7982 0.9922 

Db4 5-3' 17.9764 6.8057 0.9918 

Db4 CD 18.0088 6.8381 0.9919 

Db4 pkva 17.9913 6.8206 0.9919 

50 

Noisy 15,781 4,629 0,991 

Haar '5-3' 16.3702 5.1995 0.9875 

Haar CD 16.4477 5.2771 0.9876 

Haar pkva 6.4269 5.2562 0.9877 

Db4 5-3' 16.3992 5.2285 0.9887 

Db4 CD 16.4724 5.3018 0.9888 

Db4 pkva 6.4434 5.2728 0.9889 
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Table 3: Results obtained for the gaussian noise with Curvelet transform 

Noise Curvelets Results 

Level Level Directions PSNR SNR NCC 

10 

Noisy 29,442 18,305 0,933 
2 8 32,1314 20,9948 0.9977 
3 8 33,2349   22,0982   0,9963 
4 8 33.4762   22.3395   0.9962 
2 16 32.2846  21.1480  0.9978 
3 16 33.3605  22.2238   0.9969 
4 16 33.4888  22.3522   0.9964 

20 

Noisy 23,495 12,358 0,996 

2 8 27,4977 16.3610 0.9969 
3 8 29.9953 18.8587 0.9945 
4 8 30.7901 19.6534 0.9935 
2 16 27.5999 16.4633 0.9973 
3 16 30.2901 19.1534 0.9950 
4 16 30.9358 19.7992 0.9938 

30 

Noisy 20,011 8,875 0,994 
2 8 24.4393 13.3027 0.9967 

3 8 27.8621 16.7254 0.9930 
4 8 29.1350 17.9984 0.9913 
2 16 24.4719  13.3353  0.9977 
3 16 28.1111  16.9744  0.9945 
4 16 29.3402  18.2035  0.9925 

40 

Noisy 17,620 6,481 0,992 
2 8 22.1288  10.9922  0.9970 
3 8 26.0525  14.9159  0.9920 
4 8 27.8573  16.7206  0.9894 

2 16 22.1924  11.0557  0.9975 
3 16 26.3992  15.2625  0.9934 
4 16 28.1093  16.9726  0.9906 

50 

Noisy 15,781 4,629 0,991 
2 8 20.3222   9.1855  0.9965 
3 8 24.6442  13.5075  0.9906 
4 8 26.7075  15.5709  0.9869 
2 16 20.3013  9.1646  0.9996 

3 16 24.8449  13.7083  0.9947 
4 16 26.9383  15.8016  0.9909 

 

Figure 7 shows the best PSNRs of the three multi-
resolution methods at the different noise variances.  

Similarly, Figure 8 illustrates the best SNRs of the 
three multi-resolution methods. 

When looking closer at the results, it can be observed that 
the curvelet transform demonstrates superior performance 

compared to both wavelet and contourlet transforms, as 
evidenced by the results shown in Figure 10. 
 

 
 
Fig. 7: PSNR Wavelet –based, Contourlets-based and Curvelet-

based methods for Gaussian noise 

 

 
Fig. 8 : SNR Wavelet based, Contourlets-based and Curvelet-

based methods for Gaussian noise 

 

Although wavelet-based methods produce PSNR values 

comparable to those obtained using contourlet transforms, 
the contourlet approach achieves slightly higher PSNR 

values overall. Furthermore, Figure 9 shows that the 
Normalized Cross-Correlation (NCC) values for the curvelet 

transform remain nearly constant and very close to 1 across 
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the entire range of experiments, indicating that the structural 
content of the CT images is well preserved after curvelet-

based denoising. 
 

 
 
Fig. 9: NCC Wavelet –based, Contourlets-based and Curvelet-

based methods for Gaussian noise 

 

 
(a) 

 
(b) 

  
(c)                                              (d) 

 
(e) 

 
Fig. 10: Denoised images : a. original image, b. noisy image 

with σ = 50, c. denoised image with wavelet transform 
(Db4 + level 4), d. denoised image with contourlet 
transform (Db4 + pkva) and e. denoised image with 
curvelet transform (16 directions and level 4) 

 
Parameter Selection and Justification 

For the wavelet transformation, we experimented with 

multiple wavelet families (Daubechies, Haar, Symlet, and 

Coiflet) and decomposition levels (2, 3, and 4). The 

selection of these parameters was based on previous 

studies in medical image processing (Donoho & 

Johnstone, 1994), which indicate that: 

 

1. Decomposition levels 2-4 provide an optimal balance 

between computational efficiency and denoising 

performance for medical images of standard 

resolution (512×512 pixels) 

2. Higher decomposition levels (>4) tend to cause over-

smoothing and loss of important diagnostic details in 

medical images 

3. Among the wavelet families, Daubechies wavelets 

generally perform well for edge preservation in 

medical images due to their compact support 

properties 

 

For the curvelet transform, we tested with 8 and 16 

directional subbands at the second decomposition level. 

This selection was based on: 

 

1. The need to capture directional features at different 

orientations in liver CT images, particularly vessel 
structures that appear at various angles 

2. The computational trade-off, as increasing the 

number of directions beyond 16 significantly 

increases processing time with diminishing returns in 

denoising performance 

3. Previous studies suggest that 8–16 directions provide 

sufficient angular resolution for medical image 

applications (Candes and Donoho, 1999a; 1999b; Ma 

and Plonka, 2009) 

 

For the contourlet transform, we experimented with 
various combinations of pyramidal filters (Pfilt) and 

directional filters (Dfilt): 

 

1. For Pfilt, we tested '9-7', 'pkva', and 'haar' filters, 

which represent different trade-offs between 

smoothness and computational complexity 

2. For Dfilt, we used 'pkva', 'cd', and '7-9' filters, which 

offer different directional selectivity properties 

3. The selection of these filter combinations was guided by 

their theoretical properties and previous empirical 

studies on medical image denoising (Do and Vetterli, 
2005; Po and Do, 2006) 

4. The specific filter combinations were chosen to 

optimize the trade-off between edge preservation 

(critical for anatomical structures) and noise removal 

efficiency 
 

Statistical Significance Analysis 

To evaluate the statistical significance of the 

performance differences between the three transformation 
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methods, additional experiments were conducted using 20 

different liver CT images obtained from the database. For 

each image and noise level, 10 independent noise 

realizations and denoising operations were performed. A 

paired t-test was applied to assess whether the differences 

in PSNR, SNR, and NCC values between the methods 

were statistically significant (p<0.05). The results indicate 

that the curvelet transform consistently outperforms both 

wavelet and contourlet transforms with strong statistical 

significance (p<0.01) across all noise levels for PSNR and 

SNR metrics. In addition, the performance difference 

between wavelet and contourlet transforms is statistically 

significant (p<0.05) only at higher noise levels (σ≥30), 

with contourlets demonstrating slightly better 

performance. For the NCC metric, the curvelet transform 

also shows statistically significant improvement (p<0.01) 

over both other methods across all noise levels. These 

findings confirm that the observed performance 

differences are not due to chance but represent genuine 

advantages of the curvelet transform for liver CT image 

denoising. 

Visual Quality Analysis 

The curvelet transform demonstrates superior 

preservation of liver boundaries and vessel edges 

compared to both wavelet and contourlet transforms. This 

advantage is especially evident in regions where the liver 

interfaces with surrounding organs, where the curvelet-

based method maintains sharper and more clearly defined 

boundaries. In addition, within the liver parenchyma, 

natural texture patterns are better preserved by the 

curvelet transform. In contrast, the wavelet transform 

tends to over-smooth these textures, potentially obscuring 

subtle pathological changes, while the contourlet 

transform preserves texture but often retains residual 

noise artifacts. 

The integrity of hepatic vessel structures is also better 

maintained by the curvelet transform. These vessels, 

which appear as branching tubular structures with varying 

diameters, are critical diagnostic features in liver CT 

images. The curvelet-based approach preserves both the 

continuity and smoothness of these structures more 

effectively than the other methods. The wavelet transform 

may introduce discontinuities in smaller vessels, whereas 

the contourlet transform maintains continuity but with 

less clearly defined vessel boundaries. 

In relatively homogeneous regions of the liver, all 

three methods effectively suppress noise; however, the 

curvelet transform achieves this with fewer artificial 

patterns or artifacts. Wavelet-based denoising 

occasionally introduces block-like artifacts in these 

regions, particularly at higher noise levels. 

Furthermore, for images containing small hepatic 

lesions, whether hypodense or hyperdense, the curvelet 

transform better preserves lesion contrast and boundary 

definition. This capability is crucial for diagnostic 

purposes, as small lesions can represent early 

indicators of pathology. 
The superior visual performance of the curvelet 

transform can be attributed to its ability to efficiently 

represent curved singularities, which are abundant in 

medical images. Unlike wavelets, which are optimal for 

representing point singularities, curvelets provide a more 
natural representation of the curved anatomical structures 

present in liver CT images. These qualitative observations 

are consistent with the quantitative results, confirming 

that the curvelet transform not only achieves better 

numerical performance but also produces visually 

superior denoised images that are more valuable in 

clinical settings. 

Contourlet Filter Bank Specifics 

The contourlet transform provides a multiscale and 

multidirectional representation of images through two 

main filter banks: the Laplacian Pyramid (LP) and the 

Directional Filter Bank (DFB). The specific choice of 

filters for these components has a significant impact on 

denoising performance, particularly for medical images 

characterized by complex anatomical structures. 

In the implementation, several combinations of 

Pyramidal Filters (Pfilt) and Directional Filters (Dfilt) 

were evaluated to optimize performance for liver CT 

images. For the pyramidal stage, biorthogonal 9–7′ 

filters, which are also employed in JPEG2000, were 

considered due to their excellent frequency selectivity 

and suitability for smooth image regions, offering a 

good balance between computational complexity and 

performance. In addition, the ‘pkva’ filters developed 

by Park, Kim, Vetterli, and Akkarakaran were tested 

because of their sharper frequency localization and 

enhanced directional selectivity, which are beneficial 

for capturing vessel-related features. Haar filters were 

also examined; although they are computationally 

efficient and preserve sharp transitions well, they 

provide less smooth reconstruction. 

For the directional filtering stage, several Dfilt options 

were explored. The ‘pkva’ filters were evaluated for their 

ability to achieve optimal frequency-domain partitioning 

with minimal leakage between directional subbands, 

making them effective for representing oriented structures 

such as vessels. Cohen–Daubechies (‘cd’) filters were 

also tested, as they offer good directional selectivity with 

reasonable computational cost. In addition, the ‘7–9’ 

filters were considered to provide an alternative trade-off 

between directional selectivity and reconstruction 

smoothness. 

The experimental results indicate that using the 

‘pkva’ filter for the pyramidal stage in combination 

with the ‘cd’ filter for the directional stage yields the 

best overall performance for liver CT images. This 
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combination achieves an effective balance between 

noise reduction and preservation of anatomical 

structures, resulting in PSNR improvements of 

approximately 0.8–1.2 dB compared to other filter 

combinations across different noise levels. 

Although the contourlet transform has a theoretical 
advantage in efficiently representing directional 

features with fewer coefficients than wavelets, the 
experimental findings show that this advantage does 

not fully translate into superior denoising performance 
when compared to curvelet-based methods for liver CT 

images. This limitation can be attributed to the fact that 
curvelets provide better angular resolution at finer 

scales, which is particularly important for preserving 
the complex vascular structures commonly present in 

liver images. 

Conclusion 

In this work, an extensive comparative evaluation 
of multiresolution denoising techniques was conducted 

for liver CT images affected by additive white 
Gaussian noise, with a focus on wavelet, contourlet, 

and curvelet transforms. The analysis revealed notable 
differences in performance among the three methods. 

Experimental outcomes, further validated by t-test 
analysis (p<0.05), consistently indicated that the 

curvelet transform achieved superior results across all 
tested noise levels. This advantage was evident in both 

quantitative metrics (PSNR, SNR, NCC) and 
qualitative visual evaluation. 

The curvelet transform demonstrated effectiveness 

because of its ability to provide a sparse representation 

of edges and smoothly varying structures, which are 

abundant in medical imagery. While two-dimensional 

wavelets are useful for detecting edge points, they are 

less capable of capturing the geometric smoothness 

along curves that characterize anatomical details in CT 

scans. Careful parameter tuning further showed that 

decomposition levels of 2–4 for wavelets, directional 

subbands between 8 and 16 for curvelets, and the 

combination of ‘pkva’ with ‘cd’ filters for contourlets 

delivered the best overall performance in liver CT 

image denoising. 

Applying the BayesShrink thresholding rule across all 

transforms contributed to preserving diagnostically 

relevant features while effectively reducing noise. Visual 

inspection reinforced these findings, with the curvelet 

transform demonstrating strong preservation of edges, 

tissue textures, vessel structures, and small lesion details, 

all of which are vital for accurate clinical interpretation. 

High normalized cross-correlation values close to 1 

confirmed that original image characteristics were well 

maintained after denoising. 

These results highlight the practical value of 

curvelet-based denoising in medical image processing, 

particularly for computer-aided diagnosis systems 

targeting liver pathologies where image quality directly 

influences diagnostic accuracy. Future research will 

extend this comparative framework to three-

dimensional CT volumes and investigate the 

performance of these transforms with additional 

imaging modalities and noise models. 
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