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Abstract: Liver cancer is one of the leading causes of mortality worldwide,
and early detection using CT imaging plays a critical role in patient survival.
However, the quality of CT scans is often degraded by noise, particularly in
low-dose imaging intended to minimize radiation exposure. This study
presents a comprehensive comparison of three multiresolution transform
techniques, namely the wavelet, curvelet, and contourlet transforms, for
denoising liver CT images. The performance of these methods was evaluated
using multiple quantitative metrics (PSNR, SNR, and NCC) under varying
noise levels, complemented by detailed qualitative assessments of the
reconstructed images. Statistical analysis demonstrated that the curvelet
transform achieved significantly superior results (p<0.01) compared with
wavelet and contourlet methods across all noise variances. For each
transform, threshold parameter choices were carefully examined, with a
focus onthe BayesShrink thresholding rule applied consistently in all cases.
Visual analysis further confirmed that curvelet-based denoising preserved
more anatomically relevant structures, including liver regions, vessel details,
and tissue textures. These findings underscore the value of curvelet
transforms for enhancing image quality in Computer-Aided Diagnosis
(CAD) systems for liver pathologies, ensuring diagnostic features are
maintained while effectively suppressing noise.
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ultrasonography, Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), and Positron Emission
Tomography (PET). Among these, CT is preferred for
evaluating extra-hepatic abdominal structures due to its

Introduction

Cancer arises when cells grow in an uncontrolled
manner and may spread to other parts of the body through

the bloodstream or the lymphatic system. Reports from the
World Health Organization further confirm that liver
cancer remains a major global health concern, accounting
for approximately 7.6 million deaths worldwide in 2008
and 82 million deaths in 2012 (World Health
Organization, 2014).

The disease occurs more frequently in sub-Saharan
Africa and Southeast Asia than in Western countries. Each
year, over 700,000 new cases are reported, and around
600,000 patients die from this cancer worldwide. Patient
survival is strongly linked to the stage at which the tumor
is identified, which makes early detection of malignant
regions crucial.

A wide range of imaging techniques is available for
identifying and characterizing liver tumors, such as
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superior sensitivity and specificity (Lindenbaum et al.,
1994).

However, CT image quality depends directly on
radiation dose. While higher doses improve image clarity,
they also increase patient exposure to x-rays, raising the
risk of radiation-induced cancer (Gabralla et al., 2015).
Dose reduction is therefore essential, but lower doses often
result in images with reduced contrast and greater
vulnerability to noise, particularly Gaussian and speckle
noise (Donoho and Johnstone, 1994; Donoho, 1995).

Image denoising plays a critical role in Computer-
Aided Diagnosis (CAD) systems. Its objective is to
suppress random noise and irrelevant information while
retaining diagnostically valuable image details. A wide
range of denoising approaches has been proposed in the
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literature for addressing low-dose CT artifacts. These
include smoothing models (Kim et al., 2007), anisotropic
diffusion filters (Alvarez et al., 1992; Perona and Malik,
1990), neighborhood-based adaptive methods (Perona and
Malik, 1990; Rudin et al., 1992), total variation
minimization (Oliva, 2004), and frequency-domain
strategies such as empirical Wiener filtering and wavelet
thresholding (Tomasi and Manduchi, 2002), as well as
neighborhood-based adaptive methods (Perona and Malik,
1990; Rudin et al., 1992).

Total variation minimization (Rudin et al., 1992), and
frequency-domain strategies such as empirical Wiener
filtering and wavelet thresholding (Tomasi and Manduchi,
2002). This study compares three multiresolution
transforms, namely the wavelet, curvelet, and contourlet
transforms, for denoising liver CT images. Although each
of these methods has been applied individually in medical
image denoising, a systematic comparison focused
specifically on liver CT images has not been fully
explored. The contribution of this work is to provide a
comprehensive evaluation of these transforms using
several quality measures, including PSNR, SNR, and
NCC, across different noise levels, thereby clarifying their
relative effectiveness in processing noisy CT images. The
denoising procedure involves two main stages:
Multiresolution transformation and thresholding, with
parameters tailored to each transformation.

Background Theory

Multiresolution methods provide frequent information
on different scales, orientation and locations. They can be
successfully used to denoise, enhance and analyze
images. This section briefly reviews the techniques
involved in this study, including the wavelet transform,
the curvelet transform and the contourlet transform.

Wavelet Transform

Wavelets are functions generated from one single
function ¥ by dilations and translations. The basic idea of
the wavelet transformation is to characterize any function
by superposition of wavelets. The translated and dilated
wavelet functions derived from the mother wavelet ¥ are
given by Equation (1):
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Here, a represents the scale coefficient and b
represents the translation coefficient.

The wavelet transform of the signal x(t) is given by
Equation (2):
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Where the function ¥ a, b must be square integrable
and must have compact support.

Discrete  Wavelet Transform (DWT) provides
multiscale analysis by dividing an image into sub-bands
that capture both spatial and frequent information. At the
first decomposition level (Fig. 1a), the image is separated
into four sub-bands: LH1, HL1, and HH1, which contain
fine detailed information, and LL1, which represents the
approximation of the image at a coarser scale. The LL1
sub-band is then further decomposed to generate the next
level of coefficients, producing a two-level
decomposition (Fig. 1b). This hierarchical process can be
repeated (LL2, LL3, etc.) until the desired resolution is
achieved.

The basic principle of denoising wavelets was first
proposed by Donoho and Vetterli in [9, 10], where he
thresholds the wavelet coefficients to zero if their values
are below a certain threshold.

The Curvelet Transform

Although Discrete Wavelet Transform (DWT) has
proven highly effective for mathematical analysis and
image processing, its limited directional sensitivity
restricts its usefulness in many tasks. To address this,
Candes and Donoho introduced the ridgelet transform in
1999, which is particularly suited for representing
straight-line singularities (Candes, 1999; Candes and
Donoho, 1999a). While ridgelets offer flexibility in
handling  higher-dimensional  singularities,  their
application is limited because real-world images rarely
contain purely global straight edges (Candes and Donoho,
1999b). To overcome these limitations, the curvelet
transform was developed as a multiscale, orientation-
based approach that provides an efficient sparse
representation of edges and curves. This technique
combines filtering with a localized ridgelet transform to
enhance edge representation in images (Ma and Plonka,
2009).

Fig. 1: DWT for the Liver image : (a) First Level and (b) Second
Level
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In R? ridge lets are constant along ridge lines of
Equation 3 and are wavelets (with a scale s) along the
orthogonal direction:

®)

X, €0s(8) + X, sin(8) = const

Thus, the curvelet decomposition is obtained by
following these steps [4]:

1. Subband decomposition of the object into a sequence
of sub bands

2. Windowing each sub band into blocks of appropriate
size, depending on its center frequency

3. Applying the ridge lets them transform to these

blocks

The Contourlet Transform

The contourlet transform offers a representation of
images across multiple scales and orientations. It is
implemented using two filter banks: The Laplacian
Pyramid (LP) and the Directional Filter Bank (DFB)
(Fig. 3). The LP generates a multiscale description of
the image by producing a low-pass version along with
a corresponding high-pass component at each level (Do
and Vetterli, 2005). The high-pass sub-band is then
analyzed using the DFB to capture directional
information and to connect isolated point
discontinuities into line-like structures. Different
implementations of DFBs exist in the literature (Po and
Do, 2006); one common approach is the k-level binary
tree decomposition, which produces 2*directional sub-
bands with wedge-shaped frequency partitions, as
shown in Figures 4 and 5.

Figure 2: Shows an example of the curvelet
transformation.

Fig. 2: Curvelet transform with 2 levels and 8 orientations
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Fig. 4: Laplacian pyramid : One-level decomposition and
reconstruction. H and G are called lowpass analysis and
synthesis filters, M is the sampling matrix. a is a coarse
approximation and b is a difference between the original
image f and its prediction
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Fig. 5: Three-level frequency partition. In the 2% = 8 wedge-
shaped frequency bands: 0-3: the mostly vertical
directions; 4—7: the mostly horizontal directions

Methods

As illustrated in Fig. 6, the proposed framework
applies a multi-level decomposition scheme for each of
the three transforms (wavelet, curvelet, and contourlet).
At every decomposition level, suitable thresholds are
determined, and soft thresholding is applied specifically
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to the detail sub-bands, while the approximation sub-band
is excluded from thresholding.

Thresholding is a key step in transform-domain image
denoising, as it governs how noise is suppressed while
retaining important image features. Two main approaches
are widely used: Hard thresholding and soft thresholding. In
the hard-threshold method, all coefficients with magnitudes
below a given threshold T are discarded, while those above
the threshold are retained, as expressed in Eg. (4):

x,if|x|>T
0,iflx| <T )

In contrast, the soft-threshold approach (also called
shrinkage) reduces the magnitude of coefficients above T
by the threshold value itself, which is formally defined in

Eq. (5):

Ssoft(x) = {

Shard(x) = {

sign(x)(|x|] — T),if |x]| >T (5)
0,if|x| <T

In this work, we apply the BayesShrink rule across all
three transforms. BayesShrink is an adaptive, subband-
specific thresholding scheme that estimates thresholds by
minimizing Bayesian risk, assuming the wavelet
coefficients in each subband follow a Generalized
Gaussian Distribution (GGD).

Al Origmal mage

Noisy mmage

Thresholding Algorithm

1. Decompose the image by applying a multiresolution transform
2. Compute the Thresh Tsoft

3. Apply Soft Thresholding on detail coefficients

4. Reconstruct the image by applying the inverse transform

Denoised mage

Compute MSE and
PSNR

Fig. 6: Proposed denoising scheme

The BayesShrink threshold is computed using the
formula:

0.2

== (6)

Where o? is the noise variance and ox is the standard
deviation of the signal in the subband. This adaptive
thresholding approach provides better edge preservation
compared to universal thresholding methods like
VisuShrink, making it particularly suitable for medical
images where preserving structural details is crucial.

The overall denoising procedure consists of the
following stages:

1. Apply the selected multi-resolution transform
(wavelet, curvelet, or contourlet) to the noisy image
Estimate the noise variance for each sub-band

3. Compute the BayesShrink threshold corresponding
to each sub-band

Apply soft thresholding to the transform coefficients
Perform the inverse transform to reconstruct the
denoised image

o

o~

Noise in most CT images can be approximated as
additive zero-mean white Gaussian noise. The noisy
image can be written as:

Xnoisy = Xori + G

Where Xori is the original image to be recovered and
G is the white noise: G(i,j) ~ N(0,0. In this study, the
random noise in Eq. (6) is assumed to be distributed across
all multi-resolution sub-bands, meaning that all
coefficients are considered to include noise.

Experimental Results and Analysis

The goal of the experiments is to make comparisons
among the multiresolution methods through revealing the
difference between the original and the denoised images.
The standard grayscale test images were chosen from the
Liver database, which are captured by simulated additive
Gaussian white noise at five different power levels ¢ =
[10, ,20, 30, 40, and 50]. We objectively measured the
experimental results by the peak signal-to-noise ratio
(PSNR) in decibels (dB) and by Signal to Noise Ratio
(SNR), which are defined as:

PSNR = leIogm[i] (7
MSE
Where:
MSE = 1 ®)

MXNZZ(XW (I!J) - Xden (I!J))2

i=1 j=1

Xor (i, J) is the original image, Xqen (i,j) is the estimated
noise-free image, and MxN is the number of pixels:
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2 also known as a sliding dot product or sliding inner
SNR = 10x|ogw[a°” j 9) g dotp g

2 product. It is expressed as:

den

M N
P X ) X g i J)
Where agori and ogen are variances of Xori and X den. In NCC = L (10)
addition, we also calculate the Normalized Cross D X (i )2
Correlation coefficient. This index informs about the =1 =
relatiVity Of the denoised image W|th Original image. It iS The Wavelets emp'oyed in the experiments are

a measure of similarity of two images. Normally NCC is Daubechies, Haar, Symlet, and Coiflet. The results are
in the range of 0 to 1, very near to 1 is the best. This is given in Tables 1-3, Figs. 7-8.

Table 1: Results obtained for the gaussian noise with wavelet transform

Results

Noise Levels Wavelet Wavelet level PSNR (dB) SNR NCC
Noisy 29,442 18,305 0,933

Haar 2 27,786 16,650 0,985

Haar 3 26,885 15,749 0,978

Haar 4 26,510 15,373 0,973

Db4 2 29,048 17,911 0,989

Db4 3 27,944 16,808 0,984

10 Db4 4 27,461 16,324 0,979
Symlet 4 2 29,109 17,972 0,989

Symlet 4 3 28,033 16,896 0,984

Symlet 4 4 27,550 16,413 0,979

Coifflet 4 2 29,191 18,054 0,989

Coifflet 4 3 28,083 16,947 0,984

Coifflet 4 4 27,595 16,458 0,980

Noisy 23,495 12,358 0,996

Haar 2 25,208 14,071 0,978

Haar 3 24,079 12,942 0,967

Haar 4 23,487 12,350 0,958

Db4 2 26,437 15,300 0,984

Db4 3 25,180 14,043 0,975

20 Db4 4 24,450 13,314 0,967
Symlet 4 2 26,492 15,356 0,984

Symlet 4 3 25,212 14,076 0,975

Symlet 4 4 24,506 13,370 0,967

Coifflet 4 2 26,566 15,430 0,985

Coifflet 4 3 25,318 14,181 0,976

Coifflet 4 4 24,598 13,462 0,968

Noisy 20,011 8,875 0,994

Haar 2 23,697 12,560 0,976

Haar 3 22,598 11,462 0,962

Haar 4 21,863 10,727 0,949

Db4 2 24,714 13,577 0,983

Db4 3 23,635 12,499 0,972

30 Db4 4 22,798 11,661 0,960
Symlet 4 2 24,739 13,602 0,983

Symlet 4 3 23,605 12,468 0,971

Symlet 4 4 22,784 11,647 0,960

Coifflet 4 2 24,815 13,678 0,983

Coifflet 4 3 23,727 12,591 0,972

Coifflet 4 4 22,919 11,783 0,962

Noisy 17,620 6,481 0,992

Haar 2 22,454 11,317 0,973

Haar 3 21,518 10,381 0,956

Haar 4 20,706 9,569 0,940

Db4 2 23,268 12,132 0,979

Db4 3 22,467 11,330 0,967

40 Db4 4 21,578 10,441 0,953
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Symlet 4 2 23,270 12,133 0,979
Symlet 4 3 22,421 11,285 0,966
Symlet 4 4 21,557 10,420 0,953
Coifflet 4 2 23,335 12,199 0,980
Coifflet 4 3 22,531 11,395 0,968
Coifflet 4 4 21,698 10,561 0,955
Noisy 15,781 4,629 0,991
Haar 2 21,285 10,149 0,970
Haar 3 20,595 9,459 0,953
Haar 4 19,748 8,611 0,934
Db4 2 21,924 10,787 0,977
Db4 3 21,463 10,326 0,964
50 Db4 4 20,576 9,440 0,948
Symlet 4 2 21,932 10,795 0,977
Symlet 4 3 21,394 10,258 0,963
Symlet 4 4 20,535 9,398 0,948
Coifflet 4 2 21,980 10,843 0,977
Coifflet 4 3 21,525 10,389 0,965
Coifflet 4 4 20,685 9,548 0,950
Table 2: Results obtained for the gaussian noise with contourlet transform
Noise Contourlets Results
Level Pfilt Dfilt PSNR SNR NCC
Noisy 29,442 18,305 0,933
Haar '5-3' 29.4441 18.2735 0.9985
Haar CD 29.4443 18.2737 0.9985
10 Haar pkva 29.4442 18.2735 0.9985
Db4 5-3' 29.4592 18.2885 0.9986
Db4 CD 29.4604 18.2897 0.9986
Db4 pkva 29.4599 18.2893 0.9986
Noisy 23,495 12,358 0,996
Haar '5-3' 23.5418 12.3712 0.9960
Haar CD 23.5468 12.3762 0.9960
20 Haar pkva 23.5435 12.3728 0.9960
Db4 5-3' 23.5261 12.3555 0.9965
Db4 CD 23.5314 12.3608 0.9965
Db4 pkva 23.5266 12.3560 0.9965
Noisy 20,011 8,875 0,994
Haar '5-3' 20.2056 9.0350 0.9933
Haar CD 20.2217 9.0510 0.9933
30 Haar pkva 20.2108 9.0401 0.9934
Db4 5-3' 20,21 9,04 0,99
Db4 CD 20,23 9,06 0,99
Db4 pkva 20,22 9,05 0,99
Noisy 17,620 6,481 0,992
Haar '5-3' 17.9434 6.7727 0.9921
Haar CD 17.9827 6.8120 0.9922
40 Haar pkva 17.9689 6.7982 0.9922
Db4 5-3' 17.9764 6.8057 0.9918
Db4 CD 18.0088 6.8381 0.9919
Db4 pkva 17.9913 6.8206 0.9919
Noisy 15,781 4,629 0,991
Haar '5-3' 16.3702 5.1995 0.9875
Haar CcD 16.4477 5.2771 0.9876
50 Haar pkva 6.4269 5.2562 0.9877
Db4 5-3' 16.3992 5.2285 0.9887
Db4 CD 16.4724 5.3018 0.9888
Db4 pkva 6.4434 5.2728 0.9889
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Table 3: Results obtained for the gaussian noise with Curvelet transform

Noise Curvelets Results
Level Level Directions PSNR SNR NCC
Noisy 29,442 18,305 0,933
2 8 32,1314 20,9948 0.9977
3 8 33,2349 22,0982 0,9963
10 4 8 33.4762 22.3395 0.9962
2 16 32.2846 21.1480 0.9978
3 16 33.3605 22.2238 0.9969
4 16 33.4888 22.3522 0.9964
Noisy 23,495 12,358 0,996
2 8 27,4977 16.3610 0.9969
3 8 29.9953 18.8587 0.9945
20 4 8 30.7901 19.6534 0.9935
2 16 27.5999 16.4633 0.9973
3 16 30.2901 19.1534 0.9950
4 16 30.9358 19.7992 0.9938
Noisy 20,011 8,875 0,994
2 8 24.4393 13.3027 0.9967
3 8 27.8621 16.7254 0.9930
30 4 8 29.1350 17.9984 0.9913
2 16 24.4719 13.3353 0.9977
3 16 28.1111 16.9744 0.9945
4 16 29.3402 18.2035 0.9925
Noisy 17,620 6,481 0,992
2 8 22.1288 10.9922 0.9970
3 8 26.0525 14.9159 0.9920
40 4 8 27.8573 16.7206 0.9894
2 16 22.1924 11.0557 0.9975
3 16 26.3992 15.2625 0.9934
4 16 28.1093 16.9726 0.9906
Noisy 15,781 4,629 0,991
2 8 20.3222 9.1855 0.9965
3 8 24.6442 13.5075 0.9906
50 4 8 26.7075 15.5709 0.9869
2 16 20.3013 9.1646 0.9996
3 16 24.8449 13.7083 0.9947
4 16 26.9383 15.8016 0.9909

Figure 7 shows the best PSNRs of the three multi-
resolution methods at the different noise variances.

Similarly, Figure 8 illustrates the best SNRs of the
three multi-resolution methods.

When looking closer at the results, it can be observed that
the curvelet transform demonstrates superior performance
compared to both wavelet and contourlet transforms, as
evidenced by the results shown in Figure 10.

T T T T \‘I
] 20 30 40 50

mWavelets

m Contourlets Curvelets

Fig. 7:PSNR Wavelet —based, Contourlets-based and Curvelet-
based methods for Gaussian noise
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Fig. 8: SNR Wavelet based, Contourlets-based and Curvelet-
based methods for Gaussian noise

Although wavelet-based methods produce PSNR values
comparable to those obtained using contourlet transforms,
the contourlet approach achieves slightly higher PSNR
values overall. Furthermore, Figure 9 shows that the
Normalized Cross-Correlation (NCC) values for the curvelet
transform remain nearly constant and very close to 1 across
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the entire range of experiments, indicating that the structural
content of the CT images is well preserved after curvelet-
based denoising.
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e i\.\
\ o ——Wavelets
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T~

0,995

0,99

0,985

== Contourlets

NCC

0,98
Curvelets

0,975

0,97

0,965

10 20 30 40 50

Fig. 9:NCC Wavelet —based, Contourlets-based and Curvelet-
based methods for Gaussian noise

Fig. 10: Denoised images : a. original image, b. noisy image
with ¢ = 50, ¢. denoised image with wavelet transform
(Db4 + level 4), d. denoised image with contourlet
transform (Db4 + pkva) and e. denoised image with
curvelet transform (16 directions and level 4)

Parameter Selection and Justification

For the wavelet transformation, we experimented with
multiple wavelet families (Daubechies, Haar, Symlet, and
Coiflet) and decomposition levels (2, 3, and 4). The
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selection of these parameters was based on previous
studies in medical image processing (Doncho &
Johnstone, 1994), which indicate that:

1. Decomposition levels 2-4 provide an optimal balance
between computational efficiency and denoising
performance for medical images of standard
resolution (512x512 pixels)

Higher decomposition levels (>4) tend to cause over-
smoothing and loss of important diagnostic details in
medical images
Among the wavelet families, Daubechies wavelets
generally perform well for edge preservation in
medical images due to their compact support
properties

For the curvelet transform, we tested with 8 and 16
directional subbands at the second decomposition level.
This selection was based on:

1. The need to capture directional features at different
orientations in liver CT images, particularly vessel
structures that appear at various angles

The computational trade-off, as increasing the
number of directions beyond 16 significantly
increases processing time with diminishing returns in
denoising performance

Previous studies suggest that 8-16 directions provide
sufficient angular resolution for medical image
applications (Candes and Donoho, 1999a; 1999b; Ma
and Plonka, 2009)

For the contourlet transform, we experimented with
various combinations of pyramidal filters (Pfilt) and
directional filters (Dfilt):

1. For Pfilt, we tested '9-7', 'pkva’, and ‘'haar' filters,
which represent different trade-offs between
smoothness and computational complexity

For Dfilt, we used 'pkva’, 'cd’, and '7-9" filters, which
offer different directional selectivity properties

The selection of these filter combinations was guided by
their theoretical properties and previous empirical
studies on medical image denoising (Do and Vetterli,
2005; Po and Do, 2006)

The specific filter combinations were chosen to
optimize the trade-off between edge preservation
(critical for anatomical structures) and noise removal
efficiency

Statistical Significance Analysis

To evaluate the statistical significance of the
performance differences between the three transformation
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methods, additional experiments were conducted using 20
different liver CT images obtained from the database. For
each image and noise level, 10 independent noise
realizations and denoising operations were performed. A
paired t-test was applied to assess whether the differences
in PSNR, SNR, and NCC values between the methods
were statistically significant (p<0.05). The results indicate
that the curvelet transform consistently outperforms both
wavelet and contourlet transforms with strong statistical
significance (p<0.01) across all noise levels for PSNR and
SNR metrics. In addition, the performance difference
between wavelet and contourlet transforms is statistically
significant (p<0.05) only at higher noise levels (6>30),
with  contourlets  demonstrating  slightly  better
performance. For the NCC metric, the curvelet transform
also shows statistically significant improvement (p<0.01)
over both other methods across all noise levels. These
findings confirm that the observed performance
differences are not due to chance but represent genuine
advantages of the curvelet transform for liver CT image
denoising.

Visual Quality Analysis

The curvelet transform demonstrates superior
preservation of liver boundaries and vessel edges
compared to both wavelet and contourlet transforms. This
advantage is especially evident in regions where the liver
interfaces with surrounding organs, where the curvelet-
based method maintains sharper and more clearly defined
boundaries. In addition, within the liver parenchyma,
natural texture patterns are better preserved by the
curvelet transform. In contrast, the wavelet transform
tends to over-smooth these textures, potentially obscuring
subtle pathological changes, while the contourlet
transform preserves texture but often retains residual
noise artifacts.

The integrity of hepatic vessel structures is also better
maintained by the curvelet transform. These vessels,
which appear as branching tubular structures with varying
diameters, are critical diagnostic features in liver CT
images. The curvelet-based approach preserves both the
continuity and smoothness of these structures more
effectively than the other methods. The wavelet transform
may introduce discontinuities in smaller vessels, whereas
the contourlet transform maintains continuity but with
less clearly defined vessel boundaries.

In relatively homogeneous regions of the liver, all
three methods effectively suppress noise; however, the
curvelet transform achieves this with fewer artificial
patterns or artifacts. Wavelet-based denoising
occasionally introduces block-like artifacts in these
regions, particularly at higher noise levels.
Furthermore, for images containing small hepatic
lesions, whether hypodense or hyperdense, the curvelet
transform better preserves lesion contrast and boundary
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definition. This capability is crucial for diagnostic
purposes, as small lesions can represent early
indicators of pathology.

The superior visual performance of the curvelet
transform can be attributed to its ability to efficiently
represent curved singularities, which are abundant in
medical images. Unlike wavelets, which are optimal for
representing point singularities, curvelets provide a more
natural representation of the curved anatomical structures
present in liver CT images. These qualitative observations
are consistent with the quantitative results, confirming
that the curvelet transform not only achieves better
numerical performance but also produces visually
superior denoised images that are more valuable in
clinical settings.

Contourlet Filter Bank Specifics

The contourlet transform provides a multiscale and
multidirectional representation of images through two
main filter banks: the Laplacian Pyramid (LP) and the
Directional Filter Bank (DFB). The specific choice of
filters for these components has a significant impact on
denoising performance, particularly for medical images
characterized by complex anatomical structures.

In the implementation, several combinations of
Pyramidal Filters (Pfilt) and Directional Filters (Dfilt)
were evaluated to optimize performance for liver CT
images. For the pyramidal stage, biorthogonal 9-7’
filters, which are also employed in JPEG2000, were
considered due to their excellent frequency selectivity
and suitability for smooth image regions, offering a
good balance between computational complexity and
performance. In addition, the ‘pkva’ filters developed
by Park, Kim, Vetterli, and Akkarakaran were tested
because of their sharper frequency localization and
enhanced directional selectivity, which are beneficial
for capturing vessel-related features. Haar filters were
also examined; although they are computationally
efficient and preserve sharp transitions well, they
provide less smooth reconstruction.

For the directional filtering stage, several Dfilt options
were explored. The ‘pkva’ filters were evaluated for their
ability to achieve optimal frequency-domain partitioning
with minimal leakage between directional subbands,
making them effective for representing oriented structures
such as vessels. Cohen—-Daubechies (‘cd’) filters were
also tested, as they offer good directional selectivity with
reasonable computational cost. In addition, the ‘7-9’
filters were considered to provide an alternative trade-off
between directional selectivity and reconstruction
smoothness.

The experimental results indicate that using the
‘pkva’ filter for the pyramidal stage in combination
with the ‘cd’ filter for the directional stage yields the
best overall performance for liver CT images. This
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combination achieves an effective balance between
noise reduction and preservation of anatomical
structures, resulting in PSNR improvements of
approximately 0.8-1.2 dB compared to other filter
combinations across different noise levels.

Although the contourlet transform has a theoretical
advantage in efficiently representing directional
features with fewer coefficients than wavelets, the
experimental findings show that this advantage does
not fully translate into superior denoising performance
when compared to curvelet-based methods for liver CT
images. This limitation can be attributed to the fact that
curvelets provide better angular resolution at finer
scales, which is particularly important for preserving
the complex vascular structures commonly present in
liver images.

Conclusion

In this work, an extensive comparative evaluation
of multiresolution denoising techniques was conducted
for liver CT images affected by additive white
Gaussian noise, with a focus on wavelet, contourlet,
and curvelet transforms. The analysis revealed notable
differences in performance among the three methods.
Experimental outcomes, further validated by t-test
analysis (p<0.05), consistently indicated that the
curvelet transform achieved superior results across all
tested noise levels. This advantage was evident in both
quantitative metrics (PSNR, SNR, NCC) and
qualitative visual evaluation.

The curvelet transform demonstrated effectiveness
because of its ability to provide a sparse representation
of edges and smoothly varying structures, which are
abundant in medical imagery. While two-dimensional
wavelets are useful for detecting edge points, they are
less capable of capturing the geometric smoothness
along curves that characterize anatomical details in CT
scans. Careful parameter tuning further showed that
decomposition levels of 2-4 for wavelets, directional
subbands between 8 and 16 for curvelets, and the
combination of ‘pkva’ with ‘cd’ filters for contourlets
delivered the best overall performance in liver CT
image denoising.

Applying the BayesShrink thresholding rule across all
transforms contributed to preserving diagnostically
relevant features while effectively reducing noise. Visual
inspection reinforced these findings, with the curvelet
transform demonstrating strong preservation of edges,
tissue textures, vessel structures, and small lesion details,
all of which are vital for accurate clinical interpretation.
High normalized cross-correlation values close to 1
confirmed that original image characteristics were well
maintained after denoising.
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These results highlight the practical value of
curvelet-based denoising in medical image processing,
particularly for computer-aided diagnosis systems
targeting liver pathologies where image quality directly
influences diagnostic accuracy. Future research will
extend this comparative framework to three-
dimensional CT volumes and investigate the
performance of these transforms with additional
imaging modalities and noise models.
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